INDEFINITE DESCRIPTIONS

Graham PriesT

1) Introduction

Unlike many sentences that are independent of Z.F. (for
example, the G.C.H. or various large cardinal axioms) the
axiom of choice is obviously true. Consider the following
reasoning: Given any non-empty set of non-empty sets x, if
we map every member of x, say y, onto a member of y, then
this mapping will be a choice function on x. (It is totally irre-
levant that there is in general no «effective» way of doing this.
Mathematics is not concerned solely with the «effective»).

The problem now arises: can we formalize the above rea-
soning in a natural way? Clearly, to do this we must have some
formal equivalent of the phrase 'a (particular) x with such and
such a property’. In other words we need a theory of indefinite
descriptions, i.e. the indefinite article. The purpose of this
paper is to establish such a theory. I will attack the problem
by trying to establish the correct semantics for such terms.
Inevitably this will involve us to a certain extent in the old
problem of how to handle denotationless singular terms.

2) Informal Analysis

Perhaps the first point to consider is whether such terms
need special semantics. After all Russell's theory of descrip-
tions may be seen as a claim that definite descriptions need no
special semantics since sentences containing definite descrip-
tions cen be paraphrased away in terms of ones not containing
them. Is it possible to find such a paraphrase for indefinite
descriptions ? The answer to this is «Almost certainly, no». The
reason is as follows.

As is well known, if we add Hilbert's ¢ -operator to the
language of set theory and add the axiom
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to Z. F., then providing we allow & -terms to occur in the axiom
schemes of Z.F,, the Axiom of Choice is provable. (See e.g.
Leisenring [1969] p. 105-107). Now Hilbert's e-symbol behaves
in many ways like the indefinite article. Certainly (1) is in-
tuitively correct if we do interpret it this way. Suppose then
that for every sentence containing e-terms, we could give a
logically equivalent sentence not containing them; and in such
a way that the paraphrase of (1) were a logical truth. Then if
the paraphrase is at all reasonable we would be able to para-
phrase the proof of the axiom of choice into a corresponding
proof in Z.F. But this is impossible. In particular reading
(3x) (Px A @)’ for 'P(ex®)’ will not do.

We are forced then to look for semantics of indefinite des-
cription. If @ is a sentence of some language, let us read ‘cx®’
as 'some (particular) x which ®'s," and let D be the domain of
existent objects.

i) Atomic Sentences

Consider first the truth value of an atomic sentence 'P(cx®)".
If the set X of x's in D which satisfy ® is non-empty, then ‘cx®’
denotes one such x and ‘P(cx®)’ is true iff P is true of that x.
This much is straightforward. If there is no such x, (i.e. X is
empty) then we suggest that ‘P(cx®)' is false. For if there is no
man next door, then it can not be true that a man next door is
a good chess player or a homicidal maniac, Hence it is false.

Some have of course argued that sentences which contain
non-denoting terms are neither true nor false, e.g. Frege,
Strawson in [1950] and elsewhere. But apart from the fact that
patently, if ‘¢x®' does not denote, then ‘cx® does not exist’ is
true, it has been well argued by Dummett [1973] pp. 413-420
that calling a sentence neither true nor false, rather than just
plain false is an empty gesture. To quote from p. 419.

'In order then ... to explain the use of sentences to make
assertions, all that has to be appealed to is a twofold clas-
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sification of sentences ... into those which could be used
to make a correct [i.e. true] utterance, and those that
would result in an incorrect [i.e., false] one'.

Now if ¢x® does not exist then it can never be correct to
assert ‘P(cx®)’. Hence it is false.

It is interesting that Dummett then goes on (p.420-429) to
argue that we do need to distinguish two different types of
falsity (loosely, false because non-existent and false because
existent but wrongly applied) in order to provide adequate
truth functional semantics for compound sentences. This claim
I take to be false. I hope it will be clear by the end of the
paper that satisfactory truth value semantics for all sentences
can be obtained without such a distinction.

Some people have actually claimed that atomic sentences
containing non-denoting terms may actually be true. Hilbert,
for example, gave an arbitrary denotation in cases of natural
reference failure. This would obviously allow for some atomic
sentences to be true. However, this is obviously ad hoc.

More interestingly, the following sorts of examples would
seem to show that such sentences can be true.

1) The alchemists sought the philosopher's stone.
2) Sherlock Holmes lived in Baker Street.

However, examples like this always depend on non-denoting
terms occurring in non-extensional contexts. Now opaque con-
texts are an interesting but totally separate problem. (They
give rise to problems such as failure of Leibniz' law completely
independently of whether or not the terms involved denote),
and to run it into the problem of non-denotation is to invite con-
fusion.

It may not be clear that the terms in 2) (and others truths of
fiction and mythology) are in non-extensional contexts. How-
ever, this is not difficult to demonstrate. 2) is not literally true,
though 'In the book by Conan Doyle, Sherlock Holmes lived
in Baker Street' certainly is. The words ‘In the book by
Conan Doyle' are absolutely necessary, though often omitted.



8 GRAHAM PRIEST

Take any work of fiction F, where the main character X, is
an actual historical figure who achieves in the book something,
Y, he failed to do in real life. Obviously, to suppress the phrase
‘In the work of fiction F' from 'In the work of fiction F, X
achieved Y’ is to invite a contradiction that does not exist.

Further, such a phrase puts any term in its scope into an
opaque context. Otherwise, we should have, by Leibniz' law:
in the work of fiction F, the character who did not achieve Y,
achieved Y. Such a plot would be difficult to write!

We may sum up the discussion of this point by saying if
'sx®’ does not exist, and ‘P’ is an ordinary, extensional predi-
cate, 'P(sx®)’ is false.

ii) Truth Functions

Once we have settled the truth value of atomic sentences,
we may consider the truth value of sentences containing con-
nectives to be determined by ordinary truth functions. This is
certainly the simplest course. It ensures that classical proposi-
tional logic holds, and does no great violence to our intuitions.

There is only one point where it may be argued that this
gives, intuitively, the wrong value, and this is probably why
Dummett feels that ordinary truth tables are inadequate.

According to our analysis, if cx® does not exist then “1P(cx®)’
is true. Now a number of people have felt that if there is no
man next door then 'The man next door is a maniac’ and

‘The man next door is not a maniac’ (6)

are both false. If we ask why this view is held, we are pro-
bably told that from ‘The man next door is not a maniac’ we
can logically infer ‘There is a man next door'. Thus (6) can not
be true if there is no man next door.

We can account for this possibility in two ways. Firstly, if
we accept that 'not’ in ordinary English can be used as predi-
cate negation as well as sentence negation (as argued, e.g. by
Jackendoff (1972) p.325ff)), then we can interpret (6) as an
atomic sentence with a complex predicate. This would make
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the inference correct. Predicate negation is easily formalisable
and I will not consider this way further.

Alternatively, we can accept that the 'not’ in (6) is sentence
negation and that

1P(cx®)

¢x® exists

is not a logically valid inference. (After all the more general

YP(cx®)
cx® exists

is certainly not logically valid).

However, this is not to deny that if someone utters 'The man
next door is not a maniac’ there are grounds for believing that
there is a man next door. For people do not usually make such
utterance unless there is a man next door. Thus

A utters 'P(sx®)’

cx®d exists

would be a good inductive inference.

Other cases of what Strawson [1952] pp. 175-179 call's pre-
supposition could be handled in a similar way.

Thus it is possible to defend our view that sentences con-
taining connectives may be evaluated with normal truth tables
in either of these ways.

iii) Quantification

The truth value of quantified sentences is simply determined
by the normal quantifier semantics over the domain D of exis-
tent entities. The temptation to admit the truth of

‘There are things which don't exist, e.g. Pegasus'’ (7)
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(e.g. Resher [1959]) should be fought, if ‘'There are really means
what it says. Of course, we may interpret the quantifier in (7)
substitutionally and this has additional plausibility in view of
Quine’s remarks on quantification in [1973]. Indeed it may be
argued that Meinong's desire to assert that in some sense,
obects that do not exist are existent (Meinong [1907]) can be
laid at the door of substitutional quantification. But to follow
this would take us too far a field.

Hence '(3y)y = ¢x®' will be true iff 'cx®’ denotes. It may
therefore conveniently be read as ‘cx® exists’,

iv) Identity

Finally, a further problem arises with identity and indefinite
descriptions. When is ‘cx® = cxv’ (1) true ? There are many
possible answers. Hilbert's ¢ operator makes (1) true when @
and ¥ are extensionally equivalent. There seems no intuitive
justification for this or for any other view except that the only
time we have a guarantee that (1) is true, is when ® and v are
the same. This is the condition we will adopt. Hence, which of
the objects satisfying ® is to be denoted by '¢x®' will have to
depend on @ itself. How to achieve this will become clear in
section 3. Perhaps it is worth pointing out that our semantics
can be modified in fairly obvious ways to accomodate Hilbert's
view or a number of others.

This concludes the informal analysis of the semantics for
indefinite descriptions.

3) We will now give the formal version of the heuristic seman-
tics of the previous section.
In what follows, I will use the following schematic variables:

®, ¢, O for formulas; x, y, z for variables; t; for terms; t for a
sequence of terms.

Let L be a first order language with variables v;, i<<w, n-place
predicates P"(i<w) and no constant or function symbols. For
simplicity, we will let identity be P2

Let Lg be the language L with ¢-terms added, i.e. we add the
following clauses to the definitions of ‘term’ and ‘formula’.
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i) ¢x® is a term.
ii) P (t; ... t,) is a formula.

Let A be a structure suitable for L. We will extend A to a

structure suitable for Lg.

Notation

Let the domain of A be A, and let V be the set of variables of
L. g, h will be maps from V into A and g(*/a) will denote

g—{(xgx)} U {(xa)}

A F @ [g] will mean that @ is true in A under the valuation of
the free variables given by g.

dp(®) (the depth of @) is the length of the longest chain of
nested ¢-terms in ®. (Hence if ® € L, dp(®) = O and if dp(®)
= n, dp(P! (sx®@)) = n+1). The depth of a ¢-term «gx®» is dp(®).

@(*/y) means ® with all free occurrences of «x» replaced
by «y». (without any change of bound variables). Now let
n be the set of choice functions on A, (x = {f; f: P(A)—
{ A }>A and {(B) ¢ B}).

Let F be the set of formulas of Lg. Then if Q: VxFxA"—r,
(ie.ifx € V,g € A", ® € F then Q(x, ®, g) is a choice function
on A), Q is suitable iff

i) If the variables of ® occur amongst x,y;,...,y, and for
1 Zin

g(Yl) = h(Yl) then Q{xrq)rg) = Q(xv(D!h)F
ii) If y is distinct from z and y is free in ®(*/y) then

Qz,2(*/y),9) = Qz.2,9(g(y))).

These conditions ensure that Q(x,®,g) depends only on the
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members of g which are relevant to ® and not on the particular
variable used to denote a parameter,

Let Q be suitable and let B = <A, Q>. The domain, B, of B
is A. We define B = ®[g] by recursion over dp(®).

if dp(®) = O, then B = @[g] iff A = ®[g]

Suppose the definition is made for all ® of depth <n

The definition for depth n+1 is itself by recursion over the
formation of @.

If @ is atomic, it is of the form P;l (t1 ... o).

For simplicity, let us suppose that only one term t; is of depth
n and that this is gx.

B k= Po(t; ... cxy...t,) [g] iff

£ (@) isdefined and B Pr(t...z...t) [9@/%;, (@)

where z is a variable not occurring in v
and ffp (g) is the partial function defined as follows:

if {beB; B = ¢[g(*/b)]} is non empty

f:p (9 = Q(x.9) {beB; B = y[g(*/b)]}

f:p (g9) is undefined otherwise.

(Thus f* (g) is the interpretation of the term ¢xy under the
P

evaluation g.) If @ is ©Ovy, Ty or (Ix)y, the clauses of the
definition are as usual. A little thought shows that apart from
the need for Q to be suitable, these are the formal equivalent
of the heuristic semantics of the previous section. The suita-
bility conditions arise only because we have to deal with open
sentences and the parameters are not part of the language.
Thus we have the two following lemmas:
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Lemma 1
If the free variables of ® occur amongst y; 1 <i<n and
h(y) = g(y) 1 £i =nthen
B ®[g]iff B = @ [h].
Proof

By induction over the formation of ®.

Corollary

If ® is closed then B = ®[g] for all g or for no g; if for all
g then write B = @.

Lemma 2

If y is free in ®(*/y),
B = ®[g(*/g(y))] iff B = ®(*/y)[g].

Proof By induction over the formation of @,

This lemma is necessary to validate axiom vi) of section four.

4. We will now characterize the semantics axiomatically. Let
T be a first order theory in the language L. The following theory

in the language Lg is called Tg. The axioms of Tg are specified
as follows:

i) Any theorem of T is an axiom.

ii) Axioms for the predicate calculus of Lg

a) d— (y—> )

b) (@— (Yy—0)) = (2 —>1) - (22— 0))

¢) (12 = )= (12 —>y) > @

d) (Vx) @ — ®(*/y) (y not bound in ®(*/y))

e} (Vx)(2—vy) » (2= (Vx)y) (x not in @)

f) (Vx)x = x

g) x = y - (? o ®(*/y)) (ynotbound in ®(*/y))
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Axioms for ¢-terms
il) y = t=>(P2 (1) < P2 (y: 1)

iv) P2(sx®; t) = (Ix)®
v) (3x)0—> (Ay)y = ¢x®

vi) y = ¢x®— @ (*/y) (y not free in ®(*/y))

: S .
The rules of inference of T  are modus ponens and generaliza-

tion. The following are theorems of Tgprovided that y does not
occur in the scope of a ¢-term in O, and all the variables free
in ¢x® are free in O (/cx®).

a) (3y)y = ¢x®— (Ix)® (From axiom iv))
b) v = ¢x®— (0 < O(V/cx®d))
(By induction over the formation of ®. Axiom iii) is the
basis).
c) (AX)D A (Vy)O — O("/sxD)
(From b) and axiom v))
d) (Ix)0 - O(*/sxO)
(From b) and axioms v), vi)).
The failure of b) — d) for general contexts ®(y) is not sur-
prising. ¢ is not an extensional operator and hence there is no
reason to suppose that ¢z© is the same as ¢z®(/cx®), even if
y = ¢x®. Finally, we have the following results.

Theorem 1.

If AT, Qissuitableand B = <AQ>,BE T

Proof

The proof is straightforward using Lemmas 1 and 2.

Corollary 1.

If A is any first order structure and Q is suitable then axioms
ii) — vi) hold in <A,Q>.
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Corollary 2.

If T is consistent then so is Tg.

Corollary 3.
S
T  is a conservative extension of T.

Proof

Let ®¢L and suppose that T4 ®
By the completeness of first order logic, we can find a model A
of {J®}UT. Let Q be suitable B= <A,Q>. Since dp(®) = O,

B =7®. Hence by Theorem 1, T° e @.

5. In section four we saw that our axioms were sound. The
axioms are also complete in the following sense:

For a given theory T, a sentence ® of Lg is valid if for every
A k= T and every suitable Q

B = <AQ>E®d.

Theorem 2.

For a given T @ is a theorem of T° iff @ is valid.

Proof

As we saw in the previous section, all the provable sentences
are valid. We will prove that if E is any set of closed sentences

of Lg consistent with respect to Tg, then E has a model. This
implies that all valid sentences are provable.
So let E be such a set. Take a countable set A of new cons-

tant symbols and extend E to a set of closed sentences A of Lg
U A such that

i) A is maximally consistent.
ii) A is satured, i.e. if (3x)®¢ A then for some at A, ®(¥/a) A,
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This is done in the usual way (as in Henkin [1949]).
With every formula of the form JIx® in A we associate an
ace A as follows:

(Ax)@— (Fy)y = cxPeA.
so for some ac A
a = ¢cx®@eA,

‘We associate with @, the a with the lowest index in some fixed
well ordering of A. We will denote this by a‘;p.

Thus
a* = gx®@eA.
0]

The following lemma is useful.

Lemma 3.

For every ax tIJ(‘/aX JeA.

Proof

(Vy) (y = x®— O(/y))e A,

Since

a* = cx®eA,
@

then

@("/a:p) ¢ A since A is maximally consistent.

Now we can construct the model B = A. Since A 2 I, this
gives result. Let A~ = A N L (i.e. the sentences of A with no
¢-terms). Then A~ is a maximally consistent, saturated set of
sentences of L.
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If®, is ® with every variable y free in ®, replaced by g(y),
then we can define in the usual way a model A with domain A
for A— such that

A O[g] iff &, ¢ A—

(see Henkin [1949]).

We can now define Q. We do this by defining a series of
functions Q,(n ¢ 0) such that Q, is a map from Vx F, x A" into
the set of choice functions on A, (where F, is the set of formulas
of depth < n) such that

i) Q.12 Q.
ii) Q, is suitable.
iii) If Q is any map from VxFx A" into n such that Q 2 Q,,
then for every formula ® of L of depth n, and every g,

<AQ> = O[g] iff @, € A.
Depth O
Q, is the empty function. If dp(®) = 0 then & ¢ A—. Hence
the result holds by the above.
Depthn + 1
If dp(®) < n Q,(x,0,9) = Q.. 1(x.2,9).
If dp(®) = n + 1, then for xeV, ge AV, if

X = {beA; ® eA}

g&x/h)
and X is not empty, then

Q 1(x29)X = a’:p '
where y is ® with every variable y, free in ® except x, replaced

by g(y). (This is possible since (3 x®)g ¢ A)
IfYESA Y = X and Y is non-empty then

Qax®Y)YeY
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(Say the least member of Y in some fixed well ordering of A\

a) Q. is a choice function. The only interesting case is when
X = {beA; @gwb)eA} and X is non empty.
Then (IxP)g e A, so [<I>("/c‘1:;J ))eeA (by the Lemma 3).

ie @ )eA ie. a:v e X.

glx/a®

b) Q,,1 2 Q, trivially.
¢) Q.1 is suitable. Again, the only interesting case is
when

X = {b; d}g(m)eA}and dp(®) = n + 1.

i) Now if g and h agree on all the variables free in ® except x,
then

‘I)g( oy 1S the same as tllh( ity

Hence X = {b; ®

s ¢4 and

Qxd9X = QxohX = a:p .

ii) Similarly Q(z,®(*/y),g) = Q(z.®,9(*/g(y)))
since (®(*/y)), is the same as fI)g( -
d) Finally, if @ 2 ®,,4, and © is of depth n + 1

<A Q> = O[q] iff ©,¢A.

The proof is by induction over the formation of ©. If © is T,
x V¢ or (Ix)y, the result follows from the maximal consis-
tency and saturation of A. Hence we need only prove it for
atomic 0.

Suppose B = <A Q> F 0OJq]

and O is P?(tl...gxtl)...tm) (and we assume for simplicity that
only ¢x® is of depth n):
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Now B = P2(sx®;t) [g] =

%, (g) is defined and B = P2(z) [g (/85 (@]

but £ (9) = Q(x.2.9) {b; B = 2lg(*/b)]}-
So by induction hypothesis f:p (9 = a:p where ¢ is ® with
every variable y free in ® replaced by g(y), except x.

Hence B = P (z;t) [g(*/a* 1{:)]

So by induction hypothesis (P® (alp 1)), € A.
But B = (3x)®[g]. Hence dx®g ¢ A, and

(cx®), = a e A.

Hence

(PP (gxd’ﬁ)s g A,

since axiom iii) € A.

Conversely, if not B = ©[g] then if © is Pf(gxdl;'l_:) either f‘q) (9)
is not defined, or it is defined and B = 1P(z;t) [g(*/f ® (a)]. If
f’(‘p(g) is not defined then B = (3 x)®[g]. Thus (](3 x)®); £ A by

induction hypothesis.
Since axiom iv) € A, then

1P2(cx@0), €A

i.e. P’f(gxdi;_t\g A,
If f ® (g) is defined, then as above ff{}(g) = a:p
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and

]P’l’l(gx(I)ﬁ] ¢ € A,
So

Pl;l(gx(pﬁ)g A

Hence the result.

Now if weputQ = U Q,
new

and
B=<AQ>
then it is easily checked that Q‘ is suitable and
B F ®[qg] iff ®,c A,
So if ® is closed, ® is ®, and since Q is suitable,

BFE ®iff deA.

Thus the semantics are complete,
‘We have the following two corollaries.
Corollary 1.

If ® is true in all structures of the form <A,Q> then D is
provable from axioms ii) — vi).

Corollary 2.

Compactness: if every f1n1te subset of X has a model, then
so does 2.
6) Conclusion

Thus we conclude the paper. The above system of indefinite
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descriptions is, I think, an adequate formalisation of our notion
of the indefinite article. There are two final comments.

i) We have treated identity as an ordinary predicate. Thus
if '¢x ® does not denote, ‘sx® = ¢x @ is false. Some
people have argued that this is not so. (e.g. Leblanc and
Halperin [1959]). However, the arguments are not very
convincing and by far the simpler course is the one we
have taken. Nevertheless, the above semantics could be
adapted to allow for this by simply adding a special
clause for identity statements in the definition of 'F"'.

ii) It may easily be checked that if we add the description
axioms to Z.F. (and allow descriptive terms to occur in
the Z.F. schemes) then the axiom of choice is indeed pro-
vable.
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